Геометрия
 
Геометрия
Методическая копилка
Прямые и плоскости в пространстве
Занятие 1
.
Взаимное расположение двух прямых в пространстве.
Занятие 2
Признак параллельности прямой и плоскости.
Занятие 3
Взаимное расположение двух плоскостей.
Занятие 4
Теорема о трёх перпендикулярах.
Занятие 5
Двугранный угол. Линейный угол двугранного угла.
Многогранники
Занятие 6
Понятие о многограннике. Правильные многогранники.
Занятие 7
Прямая и правильная призма. Параллелепипед.
Занятие 8
Пирамида. Усечённая пирамида.
Занятие 9
Решение задач по теме "Многогранники".
Тела и поверхности вращения
Занятие 10
Тела и поверхности вращения
Занятие 11
Цилиндр. Конус.
Занятие 12
Сфера. Шар.
Объемы тел и площади их поверхности
Занятие 13
Объём параллелепипеда, призмы, цилиндра, пирамиды и конуса.
Занятие 14
Площади поверхностей призмы, пирамиды, цилиндра и конуса.
Занятие 15
Объём шара и его частей. Площадь сферы.
Координаты и векторы.
Занятие 16
Координаты вектора. Скалярное произведение векторов.
Занятие 17
Угол между векторами.
Занятие 18
Векторное произведение векторов.
 
Занятие 4. Теорема о трёх перпендикулярах.

Определение. Прямая, пересекающая плоскость, называется перпендикулярной этой плоскости, если она перпендикулярна любой прямой, которая лежит в данной плоскости и проходит через точку пересечения.

Признак перпендикулярности прямой и плоскости. Если прямая, пересекающая плоскость, перпендикулярна двум прямым в этой плоскости, проходящим через точку пересечения данной прямой и плоскости, то она перпендикулярна плоскости.

Свойства перпендикулярности прямой и плоскости.
1) Если плоскость перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и другой.
2) Две прямые, перпендикулярные одной и той же плоскости, параллельны.

Перпендикуляр и наклонная.

АВ - перпендикуляр
АС - наклонная
ВС - проекция наклонной
В - основание перпендикуляра
С - основание наклонной


Перпендикуляром, опущенным из данной точки на данную плоскость, называется отрезок, соединяющий данную точку с точкой плоскости и лежащий на прямой, перпендикулярной плоскости.

Расстоянием от точки до плоскости называется длина перпендикуляра, опущенного из этой точки на плоскость.

Наклонной, проведенной из данной точки к данной плоскости, называется любой отрезок, соединяющий данную точку с точкой плоскости, не являющийся перпендикуляром к плоскости.

Отрезок, соединяющий основания перпендикуляра и наклонной, проведенных из одной и той же точки, называется проекцией наклонной.

Теорема о трех перпендикулярах.

Теорема 1. Если прямая, проведенная на плоскости через основание наклонной, перпендикулярна её проекции, то она перпендикулярна и наклонной.
Теорема 2. Если прямая, проведенная на плоскости через основание наклонной, перпендикулярна наклонной, то она перпендикулярна и её проекции.


Номера для работы на занятии

№3, страница 33; №24 страница 35

Домашнее задание

Проект на тему: «В мире прямых и плоскостей»